треугольник Паскаля

треугольник Паскаля
биом.
Pascal pyramid

Русско-английский биологический словарь. 2013.

Игры ⚽ Нужна курсовая?

Look at other dictionaries:

  • Треугольник Паскаля — …   Википедия

  • Паскаля треугольник — Биномиальные коэффициенты коэффициенты в разложении (1 + x)n по степеням x (т. н. бином Ньютона): Иначе говоря, (1 + x)n является производящей функцией для биномиальных коэффициентов. Значение биномиального коэффициента определено для всех целых… …   Википедия

  • Треугольник (значения) — В Викисловаре есть статья «треугольник» Треугольник в широком смысле  объект треугольной формы, либо тройка объектов, попарно связ …   Википедия

  • ПАСКАЛЯ ТРЕУГОЛЬНИК — таблица чисел, являющихся биномиальными коэффициентами. В этой таблице по боковым сторонам равнобедренного треугольника стоят единицы, а каждое из остальных чисел равно сумме двух чисел, стоящих над ним слева и справа: В строке с номером n+1… …   Математическая энциклопедия

  • Треугольник Серпинского — Треугольник Серпинского  фрактал, один из двумерных аналогов множества Кантора, предложенный польским математиком Серпински …   Википедия

  • Арифметический треугольник —         треугольник Паскаля, треугольная числовая таблица для составления биномиальных коэффициентов (см. Ньютона бином). По бокам А. т. стоят единицы, внутри суммы двух верхних чисел.          В (n + 1) й строке А. т. биномиальные коэффициенты… …   Большая советская энциклопедия

  • Треугольник Рёло — Построение треугольника Рёло Треугольник Рёло[* 1] предста …   Википедия

  • Паскаля треугольник —         треугольная числовая таблица для составления биномиальных коэффициентов (см. Ньютона бином). П. т. предложен Б. Паскалем (См. Паскаль). См. Арифметический треугольник …   Большая советская энциклопедия

  • АРИФМЕТИЧЕСКИЙ ТРЕУГОЛЬНИК — то же, что Паскаля треугольник …   Математическая энциклопедия

  • Биномиальный коэффициент — В математике биномиальные коэффициенты  это коэффициенты в разложении бинома Ньютона по степеням x. Коэффициент при обозначается или и читается «биномиальный коэффициент из n по k» (или «це из n по k»): В …   Википедия

  • Биномиальные коэффициенты — коэффициенты в разложении (1 + x)n по степеням x (т. н. бином Ньютона): Иначе говоря, (1 + x)n является производящей функцией для биномиальных коэффициентов. Значение биномиального коэффициента определено для всех целых чисел n и k. Явные формулы …   Википедия

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”